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ABSTRACT
As the building sector transitions towards sustainability, there has been a growing emphasis and 
research on the interplay and balance between occupants' well-being and energy consumption. 
This paper investigated the relationship between indoor environmental quality (IEQ) parameters, 
energy consumption, and occupancy in a smart office environment equipped with sensor devices in 
a tropical region using data mining techniques, specifically clustering and association rule mining 
(ARM). The aim was to detect opportunities for energy savings and IEQ improvements. Our 
methodology, based on an extensive collection of sensor-based data, relates energy consumption 
and IEQ parameters to human occupancy and translating these associations into rules. Key findings 
from the mined association rules included identifying benchmark patterns based on occupancy and 
detecting anomalies. Anomalous rules highlighted potential inefficiencies, such as high lighting or 
medium power consumption during periods of very low or no human presence, pointing towards 

opportunities for energy savings. Rules also 
revealed situations with high CO2 concentration 
and warm temperatures associated with medium 
or high occupancy, suggesting opportunities 
for IEQ improvement through ventilation 
optimisation. This study demonstrates the 
capability of the ARM algorithm to uncover 
nuanced relationships among occupancy, 
power consumption, and indoor environmental 
conditions and provides useful indications 
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towards potential energy savings and improvements in IEQ. It highlights the potential of sensor-
collected, data-driven strategies for building operational efficiency and sustainability.

Keywords: Data mining, energy consumption, energy savings, indoor environment quality, knx, occupancy, 
sensor, smart office

INTRODUCTION

In the pursuit of global sustainability, the building industry stands as a significant contributor 
to energy consumption and greenhouse gas emissions. In Malaysia, the hot and humid 
tropical climate consumes approximately 48% of the total electrical energy at commercial 
and office buildings (Syed Yahya et al., 2015). As a result, building energy consumption 
has been a primary area of focus in building research to ensure the sustainability of energy. 
Achieving energy efficiency in buildings while ensuring occupant comfort and a healthy 
indoor environment is a significant challenge facing researchers and practitioners (Anand 
et al., 2022; Halhoul Merabet et al., 2021; Mofidi & Akbari, 2020; Ngarambe et al., 2020; 
Syed Yahya et al., 2015). 

While occupant engagement in building energy efficiency programmes presents a cost-
effective solution (Pisello & Asdrubali, 2014), a lack of clear instructions for occupants to 
change and enhance their energy-use behaviour is the primary obstacle to its effectiveness. 
A plausible approach to tackling this problem is to research data-driven methodologies 
that can directly analyse the energy-consuming activities of occupants and transform them 
into organized knowledge and practical recommendations. Previously, there are numerous 
studies that have highlighted the importance of incorporating occupancy-based controls 
and monitoring systems to optimise energy use based on real-time occupancy patterns 
(Anand et al., 2022; Mofidi & Akbari, 2020; Syed Yahya et al., 2015). In this regard, some 
studies have attempted to propose various methods, including data mining (DM) techniques 
(Ashouri et al., 2018; Yu et al., 2011), and occupants behaviour-based reasoning (Ahmadi-
Karvigh et al., 2018), to establish a correlation between their activities and energy usage. 

Despite the importance of balancing act between comfort and energy in buildings, 
particularly in tropical climates, and while data-driven approaches and occupancy-
based methods show promise, a fundamental gap remains in literature. To the best of 
our knowledge, despite its importance, the interrelationship between these aspects (i.e., 
occupancy behaviour, IEQ, and energy consumption) remains understudied, especially 
in the tropical climate. Addressing this crucial gap is essential because previous research 
attempting to connect these areas has significant limitations that prevent complete 
understanding. Specifically, a significant drawback of many methodologies is that dynamic 
changes in occupancy patterns are not considered when estimating energy savings.
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Furthermore, previous research has predominantly concentrated on energy 
consumption, overlooking the interrelationship between energy usage, thermal comfort, 
and indoor environmental quality (IEQ), especially with regards to occupancy behaviour 
(Tien et al., 2022). While review studies on occupant comfort exist (Halhoul Merabet 
et al., 2021; Mofidi & Akbari, 2020; Šujanová et al., 2019), empirical studies involving 
extensive and long-term sensor data collection in real-world settings, such as those in 
Oluwatayo and Pirisola (2021), are generally lacking. Most relevant studies limit their 
attention to examining human comfort or energy use concerning particular elements of 
IEQ parameters, and there is a notable lack of comprehensive research that connects all 
these factors (occupancy, IEQ, and energy) to provide a complete understanding of their 
complex interaction (Mofidi & Akbari, 2020; Verma et al., 2023). This highlights the need 
for data-driven research to uncover cause-and-effect relationships between occupancy 
behaviour, IEQ, and energy consumption (Ngarambe et al., 2020). 

As the building sector is currently undergoing a transformation towards more intelligence 
with extensive sensor field deployment, this paper presents a study of occupancy-based 
association analysis of IEQ and energy consumption. We conducted the study in a smart 
office space that has deployed KNX-based sensor technology. The purpose of this study 
is to examine the correlation between human occupancy, IEQ, and energy consumption, 
with the aim of identifying potential energy savings and improving IEQ for the well-being 
of occupants. We reckoned that identifying specific patterns, associations, and anomalies 
within the complex interplay of the aforementioned factors requires suitable data mining 
techniques like Association Rule Mining (ARM), which can reveal relationships between 
disparate parameters. Crucially, the novelty of this paper lies in the unique application 
of ARM, validated by continuous, granular, real-world sensor data, specifically within 
the understudied context of a hot and humid tropical office building, providing empirical 
evidence absent in much of the existing literature. 

LITERATURE REVIEW

Indoor environmental quality (IEQ) plays a significant role in the well-being and 
productivity of building occupants (Lan et al., 2014; Mofidi & Akbari, 2020; Tharim et 
al., 2017). IEQ includes several elements such as thermal comfort, visual comfort, and 
indoor air quality (IAQ). Past studies have emphasised the significance of these aspects in 
establishing a comfortable and healthy indoor environment (Ascione et al., 2021; Lim et 
al., 2017; Mofidi & Akbari, 2020; Tharim et al., 2017). A comfortable thermal environment, 
achieved through factors such as temperature, humidity, and air velocity, is essential for 
occupant satisfaction and can significantly influence productivity levels (Mofidi & Akbari, 
2020). In addition, visual comfort, influenced by factors such as daylighting, glare control 
and artificial lighting, is equally important for good visual performance and satisfaction 
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(Lim et al., 2017). Maintaining an optimal IAQ through adequate ventilation rates can also 
reduce indoor air pollutants and contribute to occupant health and productivity (Anand et 
al., 2022; Ascione et al., 2021; Tharim et al., 2017). Multiple studies have highlighted the 
strong connection between IEQ, occupant well-being and productivity (Halhoul Merabet 
et al., 2021; Mofidi & Akbari, 2020; Ngarambe et al., 2020; Tharim et al., 2017).

However, the challenge lies in achieving energy efficiency while simultaneously 
maintaining occupant comfort and IEQ. Balancing energy savings with occupant needs 
has been a continuous concern in building design and operation (Syed Yahya et al., 2015; 
Verma et al., 2023). Many studies have focused on optimising individual IEQ parameters, 
such as thermal comfort, in relation to energy consumption. For example, one way of 
achieving this is through passive design strategies to minimise energy consumption while 
maintaining thermal comfort (Tien et al., 2022; Verma et al., 2023). However, there is a 
growing recognition of the need for a more holistic approach that considers the interactions 
between all IEQ parameters and their combined impact on energy use (Dong et al., 2023; 
Mehmood et al., 2019; Mofidi & Akbari, 2020; Verma et al., 2023). This requires integrating 
advanced technologies, such as computational intelligence, optimisation methods, and 
behaviour modelling techniques, into building design and operation (Mofidi & Akbari, 
2020). The goal is to create intelligent buildings that are adaptive to dynamic occupant 
needs and environmental conditions while minimising energy consumption. 

While the implementation of energy-efficient building systems, including heating, 
ventilation and air-conditioning (HVAC) systems and lighting controls, is of paramount 
importance, it is imperative that these systems are designed and operated with a primary 
focus on the comfort and health of the occupants. Recent studies have emphasised the 
importance of incorporating occupancy-based controls and monitoring systems to optimise 
energy use based on real-time occupancy patterns (Anand et al., 2022; Mofidi & Akbari, 
2020; Syed Yahya et al., 2015). These typically involve strategies such as adjusting 
ventilation rates based on occupancy levels (Anand et al., 2022), utilising daylighting to 
reduce reliance on artificial lighting (Lim et al., 2017), and implementing personalised 
ventilation approaches to enhance both thermal comfort and IAQ (Anand et al., 2022). The 
integration of data-driven approach and techniques, such as computational intelligence, 
optimisation methods, and behaviour modelling techniques, is crucial towards the 
realisation of intelligent buildings that effectively balance energy efficiency with occupant 
well-being (Mofidi & Akbari, 2020; Verma et al., 2023).

While AI and ML show promises for enhancing building performance in energy 
efficiency, thermal comfort, and IAQ prediction, a critical gap persists in their holistic 
application integrating these factors with dynamic occupancy behaviour. Current research 
often isolates energy efficiency or thermal comfort (Halhoul Merabet et al., 2021; Hong et 
al., 2020; Mehmood et al., 2019; Ngarambe et al., 2020), overlooking the interdependence 
of energy use, IEQ, and occupancy patterns (Tien et al., 2022). Furthermore, most ML/
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DL studies remain simulation-based, lacking real-world validation via post-occupancy 
evaluation (Tien et al., 2022). This gap is compounded by insufficient datasets capturing 
diverse building types and occupancy-IEQ dynamics (Halhoul Merabet et al., 2021; 
Metwally et al., 2022) and a scarcity of research integrating AI-based comfort models 
into building controls to quantify real-world energy-occupancy-IEQ causality (Ngarambe 
et al., 2020). Addressing these limitations is vital for advancing intelligent buildings that 
holistically optimise energy and occupant well-being.

METHODOLOGY

The study was performed in a three-story smart office building. This building was specifically 
chosen for this study because it is a smart office equipped with a comprehensive KNX-based 
building automation system (BAS) and an extensive network of sensor devices (Tee et 
al., 2023). This system was implemented as the core technology for energy management, 
with various sensors (including power, motion, lighting, and presence sensors) installed to 
monitor and control building elements. This sensor infrastructure enables the continuous 
collection of detailed, real-world data on human occupancy, indoor environmental quality 
parameters (temperature, CO2), and energy consumption, which is essential for the data-
driven analysis using clustering and association rule mining employed in this research. 

The study was performed in the ground-floor office area of the building which covers an 
area of 81.32 m2 (around 875 sq.-ft.) with cubicle partition seating that houses 15 engineers 
or technical staff. The area is served by three units of 1 HP (745 W) split air-conditioning 
units. The working hours of the office area are 09:00–18:00 hours, from Monday to 
Saturday. Sensor-wise, there is a Modbus power sensor module made by EVC installed 
to record detailed energy use for air conditioning, plug-points, and lighting. In addition, a 
KNX-based True Presence Multisensor made by Steinel (hereinafter presence sensor) is 
also installed at the ceiling of the office space, as shown in Figure 1. The sensor is capable 
of accurate recording of 360° human presences up to 15 meters (seated and walking) and 
also indoor parameters that are limited to air temperature, relative humidity (RH), carbon 
dioxide (CO2) concentration, and volatile organic compound (VOC) concentration. To 
ensure data reliability, the sensors were calibrated prior to the data collection period using 
a standardised, fully calibrated IAQ meter (TSI 7545 IAQ-Calc Indoor Air Quality Metre).

For the purpose of the experiment, all the data from KNX devices and Modbus 
devices is recorded with a measurement frequency of 5 minutes. The detailed data logging 
process started on 1st March 2024, and all the sensor data is logged through a network 
gateway (by Netx Automation) towards an Internet server, where all the data is hosted. 
The logged parameters are power consumption of air-conditioning units, plug points, and 
lighting; occupancy; and IEQ parameters (CO2 and VOC concentration, air temperature, 
and humidity). 
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In this study, the analysis of IEQ parameters and energy consumption is based on 
occupancy data. While ongoing data collection captures patterns over a longer duration, 
this preliminary study focusses on the analysis of one month of data, specifically 5-minute 
interval data collected in March 2024, with slightly over 8,700 observations per parameter. 
This month was selected to illustrate the application of our methodology and demonstrate 
the types of insights that can be derived from this granular sensor data. For data pre-
processing, data aggregation is performed for each parameter to produce hourly data 
on a daily basis during only working hours (Monday to Saturday). The hourly presence 
probability is calculated to perform a timing split (or period) based on general office working 
timing. This will facilitate the study of the daily occupancy pattern and its subsequent 
correlation with changes in IEQ parameters and energy consumption. For the segmentation 
of timing into designated periods, averaged presence probability is used to detect key 
changes in occupancy patterns. Upon determining the time period, all corresponding data 
in the period are grouped together for period-based analysis.

In each period, clustering of each parameter data is performed as a data preparation 
step for association rule mining. A clustering algorithm, k-means clustering (Han et al., 
2023), a widely used and efficient method suitable for partitioning data into distinct 
categories, is applied to all the parameters of presence probability, energy consumption, 
and IEQ of each period. For the optimal number of clusters (k), the standard elbow method 
(Han et al., 2023) is adopted to find the optimal k value, which categorises each hourly 

Figure 1. Location of air-conditioning unit and presence sensor
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parameter into designated categories. Next, association rule mining (ARM) is performed 
to find the association among the different categories of different parameters. The ARM 
algorithm used in this study is frequent pattern growth (FP-Growth) (Han & Pei, 2000), 
a divisive-based frequent item discovery algorithm based on FP-Tree generation that is 
efficient for discovering frequent item sets and generating interpretable association rules. 
FP-Growth's main merits lie in its efficiency and scalability for association rule mining, 
primarily due to its ability to avoid candidate generation and to reduce database scans, which 
are significant drawbacks of algorithms like Apriori. The purpose of rule discovery is to 
discover benchmarking rules (i.e., frequently occurring patterns) and abnormal rules that 
may lead to energy wastage (e.g., low occupancy coupled with high power consumption) 
or to subpar IEQ (e.g., high occupancy patterns with poor air quality) or both. 

To ensure the relevance of the discovered rules, a multi-stage filtering process was 
applied to the raw ARM output. Rules were initially filtered to include the presence cluster 
(PR) in the antecedent and exclude it from the consequent, aligning with the study's 
occupancy focus. Redundancy filtering, including pruning of subsumed or directly implied 
rules, was performed. Subsequently, standard statistical metrics were used for filtering: 
rules were selected based on a minimum Support of 0.1 (indicating frequent patterns), 
a minimum Confidence of 0.7 (indicating strong predictive power), and a Lift value of 
1.0 or greater (indicating a positive association). Finally, a domain-specific filtering step 
identified the most "interesting" abnormal rules from the statistically significant set that 
directly suggested potential energy wastage or IEQ issues based on domain knowledge. 
For the purpose of presenting such a relationship, all parameter data shall be plotted in 
conjunction with human presence in a descriptive plot. Then, the generated rules from ARM 
shall be examined carefully to discover some of the interesting rules that lead to anomalies.

RESULTS AND DISCUSSION

The purpose of analytics in this study is to examine the pattern of power consumption and 
IEQ parameter changes based on occupancy. For the purpose of illustration, the results 
from the selected period of 2024-03-11 to 2024-03-17 are presented to showcase our 
methodology. This week was specifically chosen as it is representative of the typical daily 
and weekly patterns observed throughout the month analysed of March 2024 and clearly 
demonstrates the types of benchmark and abnormal rules discoverable by our data-driven 
approach. The details of each step of analysis are presented below.

Human Presence Analysis and Activity Segmentation

Human presence data is basically represented as a binary 0 or 1 value, where 0 means 
no human presence and 1 represents otherwise. For presence analysis, since occupancy 
sensing is conducted every 5 minutes, each presence data is aggregated into hourly data 
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to determine the presence probability, which is a mean value for assessing how frequently 
a space is occupied. In this study, such hourly data are calculated and aggregated daily 
during working days for the whole month of March 2024. The results of such a presence 
probability calculation are summarised in Figure 2. From the figure, it can be observed 
that mainly the office area has occupants starting from 0800–1200 hours, with significantly 
lower occupancy at 1300 hours (lunch break), higher occupancy from 1400–1800 hours, 
and low occupancy from 1800 onwards, which is in line with the working hours. In order 
to perform occupancy period segmentation, the average presence probability is plotted in 
the presence plots and used as a threshold to determine the reasonable number of change 
points in a day. As a result, the activity period can be segmented into four time periods: (a) 
Period 1 (P1): 0000–0700 hours; (b) Period 2 (P2): 0800–1300 hours; (c) Period 3 (P3): 
1400–1800 hours; and (d) Period 4 (P4): 1900–2300 hours. 

IEQ and Power Consumption Analysis

Indoor air quality and thermal comfort are crucial parts of indoor environmental quality, and 
the physical measurements are usually associated with the carbon dioxide concentration, 
temperature, air velocity, and RH. Building standards and guidelines throughout the world 
set those parameters as the reference for indoor building design. In this study, the reference 

Figure 2. Probability of human occupancy by hour of day (working day)
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standards are based on ASHRAE Standard 55 and Standard 62, along with Malaysia’s 
MS1525 for comparison. The recommended value for each parameter is listed in Table 1. 
Figure 3 shows the overall data plot that has been recorded, including the IEQ parameter 
and power consumption with human presence on the office floor (ground floor) during the 
selected period. It is noticeable that the temperature range is higher than the recommended 
values of ASHRAE Standard 55 and MS1525. This observation is different for RH as the 
recorded data is within the acceptable range according to MS1525 but slightly higher than 
the recommended range in ASHRAE Standard 55. 

Another observation for IEQ is through volatile organic compounds (VOCs) and CO2 
concentration levels. VOCs are organic chemicals that easily vapourise when they are at 

Table 1  
Summary of recommended parameter values according to relevant standards

Indoor parameter Standard Recommended value
Temperature ASHRAE-55:2017

MS1525:2019
22.2-26.7°C

24-26°C
Relative Humidity (RH) ASHRAE-55:2017

MS1525:2019
30-60%
50-70%

CO2 Concentration ASHRAE-62.1:2019 Not exceeding 700 ppm
VOC Concentration ASHRAE-62.1:2019 Not exceeding 10 ppm (or 10,000 ppb)

Figure 3. IEQ and power consumption parameter plots with human occupancy for selected period with 
discovered association rules
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room temperature. Based on the plot, it can be concluded that the VOC levels were still 
far below the recommended ASHRAE 62.1. On the other hand, CO2 concentrations can 
be observed to be very high during high occupancy, exceeding the recommended values 
under the ASHRAE 62.1 Standard. Power consumption wise, it is in general aligned with 
human presence, where power consumption for air conditioning, plug-points, and lighting 
is significantly higher during occupancy. However, there are also situations that show 
otherwise, where some of these time periods are highlighted in accordance with rules 
discovered through ARM. The results of this analysis will be discussed in the next section. 

Cluster Analysis

Table 2 shows a summary of clustering results, with parameter labels and the corresponding 
units indicated. In summary, the occupancy, power, and lighting parameters were clustered 
using the k-means algorithm, and the elbow method suggested the appropriate k for each 
parameter. 

Table 2 
Summary of clustering results

Parameter Cluster Centroid values
(Label) (Unit) Mean Std. dev. Min. Max.

Presence VLOW 1.3x10-16 - - -
(PR) (Prob.) LOW 0.12 - - -

MID 0.27 - - -
HIGH 0.49 - - -

Power VLOW 154.4 15.7 138.6 187.7
(POWER) (Watt) LOW 1866.0 1386.0 268.6 3661.9

MID 3952.0 401.2 3289.9 4443.3
HIGH 5993.4 798.9 4571.5 6925.9

Light LOW 188.2 9.8 178.2 206.8
(LIGHT) (Watt) MID 717.3 341.6 292.8 1188.0

HIGH 1260.5 37.1 1205.8 1311.9
Temp. COLD  24 - - -
(TEMP) (°C) GOOD 24 – 26 - - -

WARM  26 - - -
R.H. DRY  50 - - -
(RH) (%) GOOD 50 – 70 - - -

WET  70 - - -
CO2 LOW < 500 - - -
(CO2) (ppm) GOOD 500 – 700 - - -

HIGH ≥ 700 - - -
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Occupancy data is clustered based on the presence probability value as the feature, 
which results in four categories from very low (VLOW) to high (HIGH) activities. The 
centroid of each cluster is as indicated. For both power (air conditioning and plug-points, 
as POWER) and lighting power consumption (LIGHT), clustering is based on four 
features: mean, standard deviation, minimum, and maximum values. These features are 
useful to capture temporal variation while reducing the dimensionality of clustering. The 
hourly mean temperature (TEMP) and RH data are clustered based on the recommended 
values by the MS1525 standard, where the GOOD cluster indicates comfortable levels. 
Likewise, CO2 concentration mean data are clustered based on the ASHRAE-62.1 standard 
recommended values. VOC data are excluded from clustering, since overall they are far 
below the standard recommended values.

Mined Association Rules

Table 3 summarises selected association rules that are discovered using ARM and based 
on presence probability (PR) under different time periods. The ARM process identifies 
both benchmark rules, representing frequently occurring and expected patterns of building 
operation relative to occupancy, and abnormal rules, highlighting deviations or anomalies. 
While benchmark rules provide necessary context, our discussion prioritises these abnormal 
rules as they directly indicate potential energy wastage or subpar IEQ conditions and offer 
the most actionable insights for building optimisation. To aid explanation, some of the 
corresponding plots are highlighted in Figure 3. 

For instance, P1-R1 is presented as a benchmark rule with high support and confidence 
values. It shows that when PR is very low, all the other parameters (explained using cluster 
label hereinafter), such as LIGHT, POWER, and CO2, are also either low or very low, and 
TEMP is warm. This frequently observed pattern serves as a baseline for normal unoccupied 
periods. An example period for this to happen is from 0100–0600 hours of 2024–03-11 to 
2024–03-15 without PR. In contrast, P1-R2 indicates an abnormal rule discovered where 
LIGHT is HIGH when PR is VLOW. As highlighted in Figure 3, this happens on 2024-
03-16, 0100–0800 hours, where upon inspection there are no human presence captured by 
presence sensor. This presents an opportunity for power consumption savings. 

For Period 2 (P2), P2-R1 shows very low PR with high LIGHT (e.g., 2024-03-12, 
0800–1000 hours), suggesting a clear opportunity for power savings. The elevated lighting 
power consumption during this period, even without occupants, points to potential 
inefficiencies in the lighting control system. Such a situation can be possibly mitigated 
with an installation of occupancy-based lighting controls to ensure lights are off when 
space is unoccupied. P2-R2 indicates low PR with medium POWER and high LIGHT (e.g., 
2024-03-12, 1000–1200 hours). The intermittent presence during this period suggested 
power saving opportunities. P2-R3 associates medium PR with warm TEMP and rising 



PREPRINT

Soon Chong Johnson Lim, Boon Tuan Tee, Rajesh Sunkari, Peng Wah Siew, and Ming Foong Lee

CO2 concentration (e.g., 2024-03-11, 1000–1300 hours), suggesting IEQ improvements. 
P2-R4 discovered high PR with warm TEMP and rising CO2 concentration (e.g., 2024-03-
13, 0900–1100 hours). Both P2-R3 and P2-R4 suggest improvement opportunities in the 
IEQ aspects, especially for reducing the high CO2 concentration, with adequate ventilation 
for a more conducive work environment.

Similarly, Period 3 (P3) also discovered rules that suggest multiple improvement 
opportunities. For instance, P3-R1 found that LIGHT is high after office hours (e.g., 2024-
03-12, 1800–1900 hours). P3-R2 also discovered high LIGHT with medium POWER 
consumption despite low PR during the afternoon (e.g., 2024-03-14, 1500–1600 hours). 
Both cases of P3-R1 and P3-R2 suggest power saving opportunities. Next, P3-R3 indicates 
unsatisfactory IEQ conditions with high CO2 and warm TEMP under medium PR (e.g., 
2024-03-12, 1600–1700 hours).  P3-R4 also suggest unsatisfactory IEQ conditions with 
high CO2 associated with high occupancy (e.g., 2024-03-12, 1400–1600 hours). This 

Table 3 
A summary of selected association rules discovered based on occupancy

Period Rule Antecedents Consequents Support Conf. Lift
P1 R1 PR-VLOW LIGHT-LOW, POWER-VLOW, 

TEMP-WARM, CO2-LOW
0.9412 0.9412 1.0000

R2 PR-VLOW, LIGHT-
HIGH

POWER-VLOW 0.4118 1.0000 1.0625

R3 PR-VLOW, 
POWER-LOW

LIGHT-MID, CO2-LOW, TEMP-
WARM

0.1176 1.0000 8.5000

P2 R1 PR-VLOW, LIGHT-
HIGH

TEMP-WARM, RH-GOOD 0.3571 1.0000 1.0000

R2 PR-LOW, POWER-
MID, LIGHT-HIGH

TEMP-GOOD, RH-GOOD 0.2667 1.8667 3.5000

R3 PR-MID, POWER-
MID

LIGHT-HIGH, CO2-GOOD, 
TEMP-WARM, RH-GOOD

0.2000 1.5000 3.5000

R4 PR-HIGH POWER-MID, LIGHT-HIGH, 
TEMP-WARM, RH-GOOD

0.1333 1.0000 2.8000

P3 R1 PR-VLOW POWER-MID, LIGHT-HIGH, 
TEMP-WARM, RH-GOOD

0.4545 0.7143 1.9643

R2 PR-LOW, POWER-
MID, LIGHT-HIGH

TEMP-WARM, RH-GOOD 0.2727 1.0000 1.3750

R3 PR-MID POWER-MID, LIGHT-HIGH, 
TEMP-WARM, CO2-HIGH

0.2727 1.0000 2.7500

R4 PR-HIGH POWER-MID, LIGHT-HIGH, 
CO2-HIGH

0.1667 1.0000 2.7500

P4 R1 PR-VLOW POWER-VLOW, LIGHT-LOW, 
CO2-LOW, TEMP-WARM

0.9167 0.9167 1.0000

R2 PR-VLOW, 
POWER-MID

LIGHT-HIGH, CO2-GOOD, RH-
GOOD

0.3846 1.6667 3.6111
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indicates that ventilation optimisation strategies may need to be considered to improve 
air quality.

Lastly, for Period (P4) which is the nighttime after office hours, P4-R1 is a benchmark 
rule where very low PR is associated with very low POWER and LIGHT during night time 
(e.g., 2024-03-11, 2000–2400 hours, not shown in Figure 3), which is expected. However, 
P4-R2 indicates high LIGHT with medium POWER is associated with very low PR (e.g., 
2024-03-12, 1900–2200 hours). This rule is a clear signal for power-saving opportunities, 
where energy-saving measures for lighting, air conditioning and plug-points need to be 
considered. 

Overall, the identified association rules, shown in the shaded regions of Figure 3, 
provide insights into certain combinations of IEQ indicators and power consumption 
patterns associated with occupancy at various times throughout the day. They demonstrate 
the capability of the ARM algorithm to identify nuanced relationships among occupancy, 
power consumption and indoor environmental conditions in the office. These insights are 
essential for understanding the impact of occupancy behaviour on indoor environmental 
quality and energy consumption patterns, which may guide strategies for optimising 
building operations to enhance occupant comfort and minimise energy usage.

CONCLUSION

This study demonstrates a data-driven approach for uncovering actionable insights to 
optimise energy consumption and indoor environmental quality (IEQ) in real-world smart 
buildings. Leveraging extensive sensor data and data mining techniques, specifically 
clustering and association rule mining (ARM), within a tropical smart office setting, we 
successfully moved beyond general correlations to identify specific, critical anomalies. 
These anomalies, which include instances of high lighting or medium power consumption 
during periods of minimal occupancy and opportunities for IEQ improvement like high 
CO2 levels during medium or high occupancy, represent concrete targets for efficiency 
enhancements. The study demonstrates that analysing granular sensor data with ARM can 
reveal hidden inefficiencies and IEQ issues that may be less apparent or dynamic through 
intermittent traditional energy audit methods, thus complementing existing approaches 
and providing building operators with a powerful tool for more efficient and sustainable 
operation. 

The significance of this study lies in providing an empirical demonstration of how 
data from smart building sensor systems can be effectively analysed using data mining 
to yield actionable insights. This approach offers unique strengths that complement 
traditional energy audit methods, particularly in its ability to provide the granularity and 
continuous monitoring capabilities required to detect dynamic relationships and specific 
operational anomalies identified by our data-driven analysis. By translating complex data 
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into understandable association rules, we provide a powerful tool for building operators 
to identify targets for energy saving measures and IEQ enhancements, contributing to 
more efficient and sustainable building operation. Crucially, the identified abnormal rules 
(e.g., high LIGHT and VLOW PR or high CO2 with high PR) serve as direct, actionable 
triggers that can be mapped onto a BAS, such as the KNX-based system deployed in this 
study. For example, a BAS could be automatically programmemed to switch off lights or 
adjust ventilation rates immediately upon detection of these rule-based anomalies, thereby 
closing the loop between data discovery and automated efficiency response. 

We acknowledge, however, that the scope of this work, being a preliminary study, is 
constrained by the analysis of only one month of data. While this duration was sufficient to 
demonstrate the methodology, the generalisability and seasonal stability of the discovered 
patterns require further long-term investigation. As this preliminary study only focussed on 
a specific area, our next actions involve extending the analysis to multiple zones, developing 
and testing advanced predictive modelling algorithms (such as deep neural networks) to 
accurately predict IEQ degradation (e.g., rising CO2 level) and potential energy waste based 
on dynamic occupancy patterns. A practical integration of our data-driven prediction into 
the building automation system control strategies, such as modulating HVAC or ventilation 
rates to preemptively mitigate unsatisfactory IEQ conditions before occupant comfort is 
compromised, is also planned. Such a predictive control integration represents the crucial 
next step in advancing smart building operational efficiency. This research addresses a 
crucial gap in providing real-world evidence and a practical methodology for achieving 
energy savings and IEQ improvements based on dynamic occupancy behaviour in smart 
buildings, particularly in tropical climates.
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